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CHAPTER 1

Introduction

The diffraction of scalar (acoustical) waves by the tip of an elliptical perfectly
conducting cone was studied by Krauss and Levine [1}. Satterwhite and Kouy-
oumjian |2] examined the vector electromagnetic problem and presented a Green's
dyadic for a source radiating in the pr« sence of an angular sector. However, their
solution, expressed in terms of non-closed form Lamé functions, is cumbersome
for numerical calculations. Furthermore, so far it has not appeared possible to
asymptotically identify a “corner diffraction coeﬂicignt” from this eigenfunction
representation.

Recently, Burnside and Pathak [3] proposed a corner diffraction coefficient
which succesfully predicted the corner effect of numeroul'platc structures. Their
solution is based on the asymptotic evaluation of the radiation integral involving
the equivalent currents that would exist in the absence of the corner. A corner
diffraction term is then established by heuristically, but at present empirically,
modifying the final result. Sikta [4] modified the spread factor of the difiracted
field in {3] and applied a limiting process to derive the wave diffracted by the
corner and propagating along one of the edges of a plane right angular sector.
By introducing an empirically established “reflection coefficient” he utilized his
edge wave corner diffraction coefficient in the calculation of the double and triple

diffraction by two adjacent corners of a fiat plate structure.




The equivalent current approach is adopted herein to study the vertex diffrac-
tion of an ele ‘tromagnetic wave guided along one of the edges of a semi-infinite
wedge. The geontetry of the problem is illustrated in Fig. 1. The dipole source is
radiating in the close vicinity of the edge and excites a paraxial field g‘uided by one
of the edges of the trihedron - hence the terin “edge wave”. Explicit expressions of

- this field are derived in Chapter II based on the limiting behavior of the Green's
dyadic for an infinite wedge 7] and small distances of the dipole from the edge, and
the canonical solution (Fresnel integral representation) to the half plane problem
for plane wave grazing incidence. A simple edge diffraction coefficient can then be
established valid for smali distances of the source from the edge and for paraxial

field calculations.
FIELD POINT

DIPOLE SOURCE

|

Figure 1: An infinitesimal electric dipole source radiating in the close vicinity of
one of the edges of a semi-infinite wedge.

In Chapter I1] a Physical Optics approximation of the vertex diffracted field
is presented, based on the currents that would be induced by the edge guided

wave for an infinite wedge which is then truncated. The asymptotic evaluation

2




of the surface currents radiation integral appropriately encounters the edge wave
singularity consistent with Meixner’s edge condition [5).

The concept of equivalent currents is generally examined in Chapter IV. The
end point contribution to the rar "ation integral of these currents “excited” by the
impinging edge wave is interpreted as a vertex diffraction term. Two types of
.equiva.lent currents for arbitrary aspects of observation is shown to yield compara-
ble results. Edge wave vertex and edge wave edge diflraction coefficients can then
be established by an empirical modification of the asymptotic field expressions.
The validity of the approach is confirmed via comparison with moment method
results and pattern measurements for a small dipole radiating in the close vicinity
of one of the edges of a polygonal plate.

Every structure considered in the present work is assumed perfectly conduct-
ing. Furthermore, an exp (jwgt) time dependence has been adopted and suppressed

in the following analysis.




CHAPTER 11

Edge Waves

2.1 Introduction.

The term “edge waves” in the present work defines waves propagating along
the edge of a (possibly curved) wedge. The edge wave is actually a form of a
maxwellian field guided by the edge, and exhibiting the proper singularity in ac-
cordance with Meixner’s edge condition.

As shown later in this chapter, such a paraxial singular field can be excited
either by a plane wave at grazing incidence, or by a dipole radiating in the close
vicinity of the edge. The vertex of a terminated edge illuminated by a plane or
spherical wave can also excite an edge wave. Independently of the excitation,
but sufficiently far from its source, the edge wave behaves and can be treated
as a ray optical field. However, application of ray optical techniques (UTD} is
not straightforward, mainly due to the singular behavior of the paraxial fields.
An asymptotic high frequency approximation which encounters this peculiarity is
attempted in Chapters III and IV.

Two types of excitation of an edge wave are examined in this chapter: a plane
wave grazing the edge of a half plane and an elementary dipole radiating in the
near vicinity of the edge of an infinite wedge. The limiting behavior of the fields
predicted by the canonical solution for the half plane problem and the leading term

of the power series expansion of the Green’s dyadic with respect to the numerical




distance kgp' of the point source from the edge (where kg = 27/) denotes the
free space wavenumber) are examined. The two cases are related via reciprocity
so that a simple edge diffraction dyadic coefficient can be readily established and
applied in the approximation of the patterns of complex sources radiating in the

close vicinity of the edge or in paraxial field calculations.

2.2 The canonical solution to the half plane problem. Some limiting
cases.

A perfectly conducting half plane is illuminated by an arbitrarily polarized
plane wave, as depicted in Fig. 2. For convenience, the origin of our reference frame
has been chosen to coincide with the origin Q¢ of the Keller cone of diffracted rays,
defined by the angle #' of incidence and the observation point R(p,®,z). Since
the only dependence of the total field on the z coordinate is incorporated into the
factor exp(—jkoz cos3'), the problem is essentially quasi two dimensional. It can
be easily shown that the p and ¢-directed field components can be expressed in

terms of the E; and H; components via the equations

V.E, #x ViH,
E = —jk; 7 Bk +Jw0MoW (2.1a)
Hy = —jh, otz S X ViEs (2.1b)

[P0 A )

where k, = kg cos 8, wg = ko//Higép and pg, €y are the permeability and the
permittivity of the free space. The operator V; is defined by

o, 0 18

Vi = ‘-+¢ 209 (2.2)

Sommerfeld’s canonical solution to the half plane problem can be expressed

in a compact form in terms of the modified Fresnel Integral. In particular, we have




’

[ "/

Figure 2: Half plane illuminated by an arbitrarily polarized plane wave.

E, E;(Qe) i 1 At v 1 af .
= . {u'(p,¢:9¢";8') Fu"(p,¢;¢';8')} exp(—jkos) (2.3)
H, H}(Q°)

where we substituted

u""(p,4;¢'18') = K_(~/2kopsin 3' cos ———) (24)

and s can be expressed in terms of the coordinates (p, ¢, z) of the observation point

R as
s=psinf +zcosf (2.5)

The function K_(z) is the modified Fresnel Integral defined by [6]

K_(z) = %F.(:)exp{j(:rz+1r/4)} (2.6)
F_(z) = /:° exp(~jt?) dt (2.7)




Incorporating eqs. (2.3)-(2.7) into eqs. (2.1a)-(2.1b) and performing the dif-
ferentiations one can readily obtain a complete representatior of the transverse (to
the z direction) components of the electric and magnetic fields. Namely, one finds

that

Ep(p,6,:2) = {Ej(Q°) cosf [uf cos(¢ ~ ¢') — u” cos(¢ + ¢')]
+E(Q°)[u' sin(¢ - ¢') +u" sin(¢ + ¢')]
L2exp(—in/d) . ¢
n
\/gkop sin §' 2
[EE,(Q‘) cos ' sin% + E';;(Qe) cos %]} exp(—Jkos)
(2.8a)

Eglp$,2) = {-Ep(Q°) cosp' [u' sin(¢ — ¢') — u” sin(¢ + ¢')]
+Ej(Q°) [u’ cos(¢ — ¢') + u" cos(¢ + ¢')]
+2exp(—j‘n'/4) cos é
\/27kgp sin B! 2
.[EE,(Qe) cos ' sin% + E';,:(Qe) cos %—]} exp(—jkos)
(2.8b)

while the transverse magnetic field Hj can be obtained by using duality.
Of particular interest in our work is the limiting behavior of the above expres-

sions for small values of the parameter

e(p; B') = ko p sin 8’ (2.9)

Eqs. (2.8a)-(2.8b) can then be represented by a power series expansion of the form
oo

E"(p,¢,1)——:y—\27£’— }: (¢, 2)é (2.10)

As €(p;8') — 0 one may write




E:(p,,2) = O(c") (2.11)

exp(—jn/4)(psin g + dcos g) :

. [Eé,(Q') cos 3’ sin% + E;,(Q') cos ¢ cxp(—jkof)

Eip,9,2) = JW

2
+0(<% (2.12)

where O(el) denotes the remainder in the power series expansion and its order with

respect to e.

DIPOLE
Sip.e7

Figure 3: An infinitesimal electric dipole source radiating in the close vicinity of
the edge of an infinite perfectly conducting wedge.

At grazing incidence the leading term in the power series expansion of
Eg(p,¢,z) represents a wave guided along the edge of the half plane (an eder

wave) given by
E"cll'(p ¢ :) - lexp(-)ﬂ/JH,' si1|f+¢cosé)
V¥ 'kop 2 2

8




-S(8',¢') exp(~jkoz) (2.13)

.E'(Q i )+E’-IQ ¢2 ¢

is a source related factor. The wave described by eqs. (2.13), (2.14) satisfies the
wave equation, the Meixner’s edge condition and dominates the field in the paraxial

region.

2.3 The limiting behavior of the dyadic Green's function for a dipole
radiating in the close vicinity of the infinite edge of a wedge.

Let us consider the more general reciprocal problem of a point source 5 =

pt 6(7 - 13) radiating in the presence of a perfectly conducting infinite wedge as

depicted in Fig. 3. The field produced by this dipole-wedge configuration can be

formally written as
E(7) = juomol(7,7') - 7* (2.15)
where f( ?,13) is the Green’s dyadic for the wedge. An eigenfunction series repre-
sentation of T'(7,7) is given in [7).
For convenience the source point is located at S(p',¢',0), (r' = p',8' = x/2).
Furthermore, let kgr >> 1, so that the spherical Hankel functions of the second
kind involved in the series representation assume their asymptotic form. The

limiting form of the Green's dyadic for small values of the parameter ¢ = kop'sin 3

is of interest here. After some tedious manipulation it can he shown that

f‘(;‘,ﬁ) = C(V)(kop' sin /3')""' (3 cosBsinved + é cos ve)

(;;' sinvé' + ¢' cosvd')

'—-————’p(:’km +0(°) (2.16)

with the constant factor ('(v) defined by

9




vI(2v + 2) exp{j(v + 1)n/2)}

€)= PRI + 1) v + 3/2) (217)

and
vl oo oW | (2.18
n ' g 18)

where (WA) denotes the wedge angle. Hence, the total field for a general wedge is

written as

E(M) = jworoC(v)(kop'sinB)"~}(B cos B sinvé + écos vg)

’ exp(-rjkor) +6(€°)

(p:, sinvg' + p;' cosve') (2.19)

which, in the case of the half plane, reduces to the following expression:

£ = —3"‘—?3'1”""4*( #)

ﬁcosBsm(¢/2)+¢cos(¢/2) exp(- Jkor) 0
Veinp +0()

(2.20)

where
p ¢, sin(¢'/2) + Py cos(¢'/2)
N

is a constant source factor. The remainder O(¢®) in eq. (2.19) can be expressed in

A(p', (2.21)

a closed form only for the case of the half plane. Specifically, it can be obtained
via reciprocity from eqs. (2.8a)-(2.8b) after subtracting the edge wave term. In
the case of a general wedge angle the remainder is essentially a power series of the
small parameter ¢, the coefficients of which can be derived from the eigenfuction
series representation of the Green’s dyadic.

The lower order term in the RHS of eq. (2.19) dominates in the paraxial
region (edge wave) and reveals the strong coupling between the dipole source and

the edge. It is a spherical ray optical wave that ratisfies Maxwell's equations.

10




Clearly, the behavior of the electric field intensity of the edge wave is independent

of the orientation of the source.

2.4 The half i)lane case. :

As pointed out in the previous section an exact closed form representation of
‘the Fraunhofer region field produced by the dipole p? radiating in the presence
of an infinite half plane can be obtained by applying the reciprocity theorem to
eqs. (2.8a)-(2.8b). For small distances of the dipole from the edge one can retain
only the two leading terms in the power series expansion of the modified Fresnel
integrals involved in the canonical solution. It turns out that the total radiated
field can be described by the superposition of three terms:

i) The incident field produced by the dipole in the absence of the half plane
multiplied by a factor of 1/2,

ii) The field produced by the image of the dipole source with respect to an
infinite plane multiplied by a factor of 1/2,

iii) An edge associated field, which may be treated as an edge difiracted wave
(emanating from: Q°) in a UTD sense.

It should be noted that the components i), ii) illuminate the whole space and
not only the regions bounded by the Geoinetrical Optics incident and reflected
shadow boundaries. Under this consideration the total field is uniform everywhere
and satisfies the appropriate boundary conditions on the conducting half plane. In
& matrix notation one can write for the radiated field

Ep(T) EG"(7) + ikoZo exp(—jkor)
E(F) Epe ) T
[exp{ jkop' sin J cos(¢ — ¢'1}

11




4

J -coreonts -4 - corpiin(s - ¢) sing |

1{ sin(¢ - ¢') —cos(¢ — ¢') 0
+exp{jkop’ sin 3 cos(4 + ¢')} :
(' cosBcos(¢ + ¢') —cosPsin(¢ +¢') —sinf ‘b
—sin(¢ + ¢') ~cos(¢ + ¢') 0

J

J

4 p;
. S p;, ‘ (2.22)

5%
in which E€*(¥) denotes the edge associated term. The latter can be readily
ohtained from egs. (2.13), (2.14) or egs. (2.20), (2.21). By empirically generalizing

those results the difiracted field can be expressed in a more familiar notation by

the following equation:

eu

B | _ 2exp(-j7/4)
E;“' T /2nkgsin By
{r sin %ﬁ sin f cos g cos g— sin g ' E&(Qe)
| sec fosin g- cos g cos g cos g Ei',(Q’)
\ ‘(‘: ) exp(—jkos) (2.23)

The various parameters involved in the above expression are shown in Fig. 3. Also,
Eg, ¢'( Q°¢) are the ray optical components of the total field incident at the point
OI

Q° and produced by the dipole source, namely

Eir . ' ¢ 3! p€
% 1 = —jkozy TRLRE) L T (2.24)
:'. ns r;”




with 84 = fp denoting the diffraction angle. It should be mentioned that eq. (2.23)
reduces to the correct limiting expression of the field in the paraxial region of the

edge (B9 — 0), exhibiting the appropriate edge singularity.

2.5 Discussion and numerical results.

The accuracy of the “edge wave” solution given by egs. (2.23)-(2.24) in pre-
dicting the field for small distances of a point dipole source from the edge of
a half plane is illustrated in Figs. 4-9, in comparison with the exact Sommer-
feld (Fresnel integral) representation, for several azimuthal angles ¢ of the ob-
servation point which, for simplicity, is removed at infinity. The infinitesimal
source has a dipole moment radially directed and it is located at the points
(p'y ¢') = (0.025)¢, 135%), (0.05Xq, 75°), (0.075X0, 180°), in terms of the asso-
ciated system of cylindrical coordinates centered at the projection of the point
source onto the edge of the half plane. The amplitude pattern of the §— and
$—directed field components is then plotted aga.ix;st the elevation angle of the ob-
servation point. Comparison with the exact representation of the total field shows
that a distance p' < 0.05)¢ is adequate for the total field to be accurately de-
scribed (within 1.0 dB of magnitude) by egs. (2.23)-(2.24). As a matter of fact,
the accuracy is improved for smaller distances of the dipole or the field point (i.e.,
when grazing incidence is approached) from the edge of the half plane. In the
latter case the total field exhibits a singular behavior which is consistent with the
edge condition.

Clearly, the analysis of the waves associated with the edge of an infinite wedge
fails in the case of finite or semi-infinite edges. First, the edge wave term should be
suitably modified so that the singularity in the extension of the edge is eliminated.

Second, the corner effects should be incorporated in the total solution. Asymp-

13




totically, the end point eflect is additively introduced into the total solution and
corresponds to a corner diffracted ray. On the other hand, the edge wave singular-
ity is compensated multiplicatively with the introduction of the proper transition
dyadic. Within this context, for a dipole radiating in the close vicinity of a ter-
minated edge and sufficiently far from the corner (in the angular sector case), the

total field can be written as
Bt=E%4 Efw. T4+ Ed (2.25)

where EO is half the field produced by the dipole and its image with respect to
the plane of the plate in free space, Ed is the sum of the corner and, possibly, the
terminating edge diflracted field and T is a transition dyadic to be determined.

An empirical definition of this transition dyadic is given in Chapter IV.
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CHAPTER III

A Physical Optics Approximation of the Edge Wave Vertex Diffracted
Field

3.1 Introduction.

One of the simplest approaches to high frequency scattering problems is the
Physical Optics approximation. This method assumes the surface of ‘'a perfectly
conducting scatterer is locally plane and approximates the total field at the points
of the surface illuminated by the incident wave with the superposition of the inci-
dent and reflected field. The field is considered zero at the shadowed part of the
surface. The scattered wave is then evaluated via the radiation integral of the in-
duced surface currents. Normally, Physical Optics fails to adequately approximate
the scattered field in observation directions sufficiently away from the specular and
backscatter directions. .

The study of the edge wave corner diffraction mechanism with the Physical
Optics approach, however, is conceptually different. The excitation dipole is lo-
cated in the close vicinity of the edge of a finite wedge and sufficiently far from
its vertex as shown in Fig. 10. The induced surface currents are approximated by
the currents that would flow over the surface of an infinite wedge. The end point
contribution to the radiation integral is then interpreted as a corner diffracted
wave.

This approach is expected generally to yield an acceptable approximation of

‘8




the diffracted field whenever the edge wave current flow lines are not significantly

distorted in the vicinity of the vertex. Moment method results in general justify

this assumption.

. p |} DIPOLE
“« 3 ) {

. amund

Figure 10: Geometry for the edge wave edge and vertex diffraction problem.

8.2 Formulation of the Physical Optics solution.

For convenience, let us restrict our attention to face 1 (“0” face) of the wedge.
The zesult for face 2 (“N” face) can be readily obtained by means of a simple
transformation. The field associated with the currents ;,(13 ) flowing over the face

1 surface can be evaluated via the radiation integral

~ ; " - - —jkoR
Ey(s:) =JkoZo/ /ﬁ RxR xn(r')gg—a—”]ﬁ-o—-)ds' (3.1)

where i, is the vector from Q° pointing to the observation point, R = (i, — )/R

and R = |li.-+ Il (Fig. 11). The integration takes place over the truncated face
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of the wedge. It is presumed that j‘;(ﬁ ) can be adequately approximated “y the

actual induced currents as if the wedge was infinite, namely

Jir) = dy x A

FIELD POINT

(3.2)

DIPOLE

4

htr)

SURFACE CURRENT
ELEMENT

FACE

Figure 11: Geometry for the asymptotic evaluation of the radiation integral of

the surface edge wave currents.

where He¥( r ) is the magnetic field produced by the dipole radiating in the close

vicinity of the edge of an infirite wedge. The end point (vertex) contribution to

the surface radiation integral of eq. (3.1) is of interest here. For convenience, let us

introduce the oblique systemn of coordinates associated with the terminating edge

(edge (1) in Fig. 10), defined by the unit vectors

t

@=:; ij=g&sina; - cosa
so that:

r=1{jsina; ; z=u-—-tjcosay
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In the above equations ay denotes the angle formed by the guiding edge and
the terminating edge (edge (1)) of face 1 of the wedge. The Jacobian determinant

of the above transformation is then found to be equal to

—ag'-,i”:sinal

8(u,t1)|

and eq. (3.1) results into the following expression:

Ey(s) = E§¥(3:)-T(3c) - jkoZosinay

Sl A S exp (—ikoR)
/o/o Rx R x Fy(u,ty) T2 du dy (3.3)

The first term in the RHS of eq. (3.3) expresses the guiding edge (edge (0) of
Fig. 10) associated wave (edge wave) multiplicatively corrected by the transition
dyadic -'7_‘-( ac), due to the semi-infinite rather than infinite nature of the structure,
whereas the second term incorporates the edge (1) effect as well as the vertex
contribution. Thereafter, our attention is restricted to the second term only.

The double integral in eq. (3.3) can be reduced to a line integral along the
terminating edge, by considering the end point contribution with respect to the
variable u. A non-uniform asymptotic approximation readily follows after integra-
tion by parts. Next, a uniform representation is derived by heuristically introducing
the suitable transition function to the final resuit.

For large distances of the dipole from the terminating edge, using the results

of section 2.3, one observes that

Jilu,t)) = jk§C(v) AS(p',4') sin""1 6,
-'-’-‘l’—(lrﬁf'—"’—)(i sin 6y + £ cos ) (3.4)
0

in which

ro = \/fg sinzag 4+ (u—1ycosay+ a-)”,
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sinfg = t;sinay/rg , cosfy = (u —1,cosay + s.)/ro,

AL(e' ¢') = p" (P} sinvé' + py cosug'),

8¢ is the distance of the dipole source from the vertex, and the constant C(v)is
defind by eq. (2.17). It is reminded that v = 1/n, where {2 ~ n)= is the wedge
angle. Also, (p',¢', —s.) determines approximately the location of the dipole with
respect to the corresponding cylindrical system of coordinates. Thus, eq. (3.3) may

be written explicitly

E\5) =~ Ef¥(3) T(5)+k§+'Zp sinay C(v) A5(0',¢')
./“/”Rxﬁx(‘yno + icosfg) sin” 16
A o IsiNvUg + 2CO080g) s1n 0

_exp {—jko(R + 7o)}
47|’Rro

du dty (3.5)

whence, integrating by parts with respect to the variable u, one obtains the (non-

uniform) asymptotic approximation:

ExR) = E{™(3) -T(7) - jk§Zo sin oy
'/w RxRx|itysinay +3(sh -1 cou:q)]t‘,"'l

exp {—jko(R + fo)l-—o}
wzr"*‘ o (R+ ro)|.,_o

(3.6)

It is well known that Physical Optics does not predict the correct edge diffrac-
ted field away from the geometrical optics shadow boundary. Therefore, it would
be reasonable at this point to be restricted into the vertex contribution of the
integral involved in eq. (3.6). Note that the latter is essentially a sum of integrals<

of the form:

/0"o G(1)17P~) exp {jkg(1)} dt
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where G(t) is a slowly varying function of t and R(p) < 0. Such types of integrals
are evaluated asymptotically in Appendix A and result in expressions involving
the parabolic cylinder function of order p. Thus, the vertex diffracted field associ-
ated with face 1 of the wedge and predicted by the end point contribution to the
radiation integral of the Physical Optics currents can be expressed as follows:
_jk§Zo sin¥ ay C(v) A5(e', ¢
41raca::"+l(1 ~ cos f3)
—(sin B cos aj + sin aj cos [ cos ¢) IS,,_,(ko)] B

Ef’w(;c) ~ ){["::Sinﬂlgu(ko)

+sinaysingI%,_y(ko) 4} . (3.7)
In the above equation, Ig(ko) expresses the end point contribution to the integral

(o ]
Iptko) = [ 4771 exp {=jko(R + ro)lu=o} dt

which is examined in detail in Appendix A. For the specific semi-infinite wedge

geox'netry under consideration, the integral Ig(ko) can be approximated by:

Iko) ~ T(=p)k] exp(~jpn/2) exp{—jkolse + 1)}
_ Fg[koa}(3c; sc)]
[sin @ sin B cos ¢ + cos ay(1 — cos B)]7P ’

(3.8)

in which

a1(d; ) = —sign(r — a1 — 1) [V(sL + 50) = (5 + 1) (39)

and s}, s; denote the distance of the dipole source point and the receiver from the
origin (] of the Keller cone of diffracted rays from the terminating edge (edge (1)
in Fig. 10). The branch of the bracketed expression in eq. (3.8) is chosen according

to

(=1)7P = exp(—jpr)

23




Recall that eq. (3.7) furnishes a non-uniform approximation of the corner
diffracted field associated with face 1 of the wedge. Moreover, this becomes evident
from the singularity of the field as the receiver approaches the z-a.xil‘ (B—0). A
uniform approximation incorporates the coupling between the vertex and the point

source and mathematically implies the multiplicative introduction of the function

s s

2By . L=
F(2’roLcsm ) H Lc— .c+"c

2

where F(-) is the familiar edge transition function of UTD. The above expression
can be derived from the uniform asymptotic approximation of integrals, the inte-
grands of which involve a phase function presenting a stationary phase point (in
our case the dipole source) in the vicinity of an end point (the vertex). It should
also be noted that the above transition function appears in the edge wave corner

difiraction coefficient obtained in [4].

3.3 The Physical Optics vertex diffracted wave.

Eq. (3‘.7) along with egs. (3.8), (3.9) can be used to identify a vertex diffraction
coefficient associated with the Physical Optics currents flowing over the wedge
surface. Retaining only the dominant term in the expression of the vertex diffracted

wave (dominant with respect to the parameter 2kgs!.) one obtains

EP(5,) ~ explilv = 1)m/2) T(v) C(v) ZoAS(s, o) ZRL1 k(o + 2c)}

41u¢a'c"
B . 2 Eulko"?(;c;‘::)]
+ cot 5 F(szLc sin ﬂ/z) {[CO'- ﬂ](l _ ('otﬂ) + .inﬂ('os ¢]|,
F2, |koad(3ci o) A (3.10)
[cot az(1 — cos ) + sinF cos(nx — @)

Eq. (3.10) can be rewritten in a more familiar notation by employing the follow-

ing expressions for the incident fiell on the vertex 0 produced by the dipole p°
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radiating in free space:

E’_" (Qc). x -jkoZy =10t (4—j’k o) PB'
Eiy(Q°) e |y ‘
Then,
E“P(s) = EgP°(3:) B (3.11e)

with

ESP5,) ~ TRUYE/2AT()C(v) Ep(Q°)sinvg' + Ej(Q°)cos vg'
g tel = ko sin! "ﬂ'
ceot P . 28 < vlkoad(dc; o¢)]
cot 5 F(2koLcsin 3) {[cotal(l = cosﬁl) oy e

-p[koaz(‘m 4 e)) exp (—jkosc)
[cot a2(1 — cos 3) + sin B cos(nn — ¢)]¥ 8¢

(3.11b)

where aj , a3 are the angles formed by the terminating edges (1) and (2) and the

guiding edge (0) for faces 1 and 2 respectively and the parameters a) 3 are defined
by

a12(3c; o¢) = ~sign(x — a2 ~ Bra) |\flac + o) = (s} 3 + 2,2)| (3.12)

with .9'1'2, 8] 2, as before, denoting the distances between the dipole or the receiver
and the origin of the Keller cone of diffracted rays from the edges (1) and (2) of
faces 1 and 2 respectively, while 8;,8; are the elevation angles of the observation
point in terms of the edge (1) and (2) fixed coordinate systems. The transition

function F<,(-), which is examined in detail in Appendix B, is defined by

FZ(Iz1) = exp (jur/4) (212172 exp (ilz1/2) D_ylexp (jr/4)2le]]  (323)




where D_,(-) is the parabolic cylinder function of order —v. For large values of
its argument, F€ (|z]) reduces to unity, while it compensates the singularity of
the field when either Qf — Q€ or Q5 — Q€ (812 = 7 — a3,2). Furthermore,
after some elementary manipulation and according to a similar analysis in [8] the

approximation
81,2+ 21,2 = (s; + 8c) — Le[1 + cos(ay2 + By 2)] (3.14)

can be justified for large values of the parameter L., defined by:

[}
8.8
c = ,_C".% (3.15)
C c
so that:
ay2 % 2L, cos? (ﬂ—’-;—ﬂﬁ) (3.16)

Finally, noting that:
cos 3} = sinay sin B cos ¢ — cos a; cos B
and
cos 2 = sinay sin3 cos(nw — @) — cos ag cos §

eq. (3.11b) can be rewritten in terms of the edge (1) and (2) fixed coordinate
systems as

exp (jux/2)T(v) C(v) E}(Q‘)lin véd' + Ei.(Q‘)cos v
ko sinl—V g
2 B \ { sin” ay F<,,(2koLc cos? (91;.21 )]

PO
Eg” =

- cot /; F(2koL, sin

2 (cosay + cos By )V

(3.17)

" (cos ag + cos F3)¥ 8¢

+|in"_a2 {:_V[ZkoLffgsz (91;92 )] } exp (—jkosc)
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For the particular case of the plane angular sector (n =2, v =1/2and a; = a3 =
a, a; = a3 = a) eq. (3.11b) reduces to
1 EL(Q°) sin(¢'/2) + E(Q°) cos(d/2)
V2rko \/si;l—ﬂ'
- cot g F(2kgLc sin® g)

'pa-._
ESP ~

_ Ffl/zl"o"z(;“ sc)] exp(~jkosc)
\/cota(l ~ cos 3) + sin 3 cos ¢ 8¢

(3.18)

and for the right angular sector (a = #/2) it simplifies to the following

pero o __ 1 Ep(@)ein(¢'/2) + Ey(QF) cos(¢'/2)
4] \/iwko \ﬁinﬂ'

-cot ‘22 F(2koL, sin? g )
FeyplkoLe(1 - V1= sin? 3 cos? 8)) exp(—jkosec)

sinp cos ¢ 8¢

(3.19)
8.4 Numerical results and discussion.

The corner difiracted field described by eqs. (3.11a)-(3.11b) does not satisfy
either the boundary conditions on the surface or reciprocity with respect to the
azimuthal coordinate. Both of these inadequacies are inherent with the Physical
Optics approximation of the difiracted wave. Besides, the asymptotic evalution
of the radiation integral required that the observation point was not close to the
surface of the semi-infinite wedge, where the direct dipole field (edge wave) is
dominant. However, the Physical Optics solution based on the true currents that
would flow over the surface of the wedge yields a satisfactory approximation of the
scattered field, provided that no diffracted rays from edges (1) and (2) reach the
observation point. The latter corresponds to the case where aja + 12 > 7. A

remarkable fact is that the vertex difiracterl field is dominantly B-directed, which is
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physically justifiable since the current is accumulated in the vicinity of the guiding
edge, flowing parallel to it. Note also that as a — x the vertex diffracted field

vanishes and the total solution reduces to the edge wave term as it should.

B

a'r‘ 4\ —b

Figure 12: The square plate used in the numerical application of the Physical
Optics solution.

The radiation of a dipole in the close vicinity of a flat square plate (see Fig. 12)
is examined in Figs. 13-20. The dipole is located at a distance p' = 0.01) from
the center of one of the edge of a rectangular plate with dimensions 4\ x 4\ as
depicted in Fig. 12. The pattern is evaluated in the elevation plane associated with

the guiding edge fixed reference frame. rentered at the point of projection of the
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dipole to the edge, for several values of the azimuthal angle ¢ of the observation
point. In particular, the radiated field is approximated by the direct dipole field
(edge wave) multiplicatively corrected by the transition dyadic which is developed
in Chapter IV, and the superposition of two corner diffracted rays fror;z the corners
of the guiding edge. Other possible diffraction mechanisms which may contribute
for small azimuthal coordinates of the observation point are neglected in the present
analysis.

The predicted radiation patterns are compared with moment method results
[9]. It is noted that moment method under those circumstances should not be
viewed as exact since its surface patch monopoles may not accurately approximate
the singular current flowing along the guiding edge as well as the strong coupling
between the dipole and that edge. As an independent technique, however, it yields
comparable results, which for certain aspects of observation show good agreement
with the Physical Optics approximation developed earlier.

The edge wave itself and the edge wave corner diffracted field clearly dom-
inate the total -directed field in the paraxial region of the guiding edge. Both
mechanisms, however, decay as the observer is removed from the paraxial region.
The non-oscillatory behavior of the ¢-directed field amplitudes (see, for instance,
Figs. 19, 20) also reveals that the corner diffracted contribution to that compo-
nent of the field appears indeed to be negligible. Besides, this component of the
radiated wave may be attributed to double edge diffractions or higher order ierms
in the asymptotic expansion of the radiation integral of the edge wave currents.

The comparability of the moment method results and the Physical Optics so-
lution deteriorates at small azimuthal angles. However, at these lower cuts other
secondary diffraction mechanisms (corner. double edge diffraction. etc.) may con-

tribute significantly to the radiation patiern.
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CHAPTER IV

An Equivalent Current Approach

4.1 Introduction.

It was shown in Chapter III that the surface radiation integral can be asymp-
totically reduced to a line integral along the terminating edges of the semi-infinite
wedge. In other words, the high frequency radiated field can be adequately approx-
imated by the radiation integral of equivalent electric and magnetic edge currents
flowing along these terminating edges. In the Physical Optics approximation de-
veloped earlier, those equivalent edge currents asymptotically incorporated the
physical optics induced current effect.

Within the frame of the Physical Theory of Diffraction [10,11,12] the scattered
field from a body can be considered as the superposition of the waves produced
by two current components flowing along the surface of the body: a uniform com-
ponent related with the geometrical optics field (physical optics currents) and a
non-uniform current due to the possible curvature or discontinuities in the curva-
ture of the surface of the scatterer (fringe currents). Hence, in the particular edge
wave vertex diffraction problem, the geometry of which is illustrated in Fig. 10, the
solution can be improved by superimposing to the uniform currents fringe current<
due to the presence of the terminating edge discontinuity. In the context of our
asympiotic analysis the field is approximated by the radiation integral of the sum

of two types of edge (both electric and magnetic) equivalent currents: the first
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set corresponding to the uniform (physical optics) currents and the second incor-
porating the fringe current eflect. The asymptotic reduction of the edge current
radiation integral involves a stationary phase point contribution (edge diffracted
wave) together with an end point eflect. The former, as the origin of ll(o:llel"l cone
of diffracted rays moves away from the vertex, and in the region that is illuminated
Sy the edge diflracted field, should normally reduce to the UTD solution, whereas
the latter is interpreted as a vertex diffracted wave.

The available representations of the edge equivalent currents are based on
the canonical solution to the infinite wedge problem or its asymptotic reductions
(Keller's Theory, UTD), which clearly fail in the vicinity of the the vertex. How-
ever, the uniform asymptotic representation of the total field obtained from the
truncated equivalent currents radiation integral presents s reasonable qualitative

behavior and shows good agreement with moment method and measured results.

4.2 The equivalent edge currents concept.

The concept of the equivalent edge currents in the theory of diffraction, based
on Sommerfeld’s half plane solution, was initially developed by Millar [13,14,15)
and Clemmow (16] as a simple method for deriving asymptotic approximations
of the electromagnetic wave diﬂ'uéted by large apertures in perfectly conducting
screens. Later, the same concept was formalized by Ryan and Peters [17) and
employed to correct the singular GTD fields in the caustic regions. A UTD repre-
sentation of the Ryan and Peters equivalent edge currents for plane wave incidence
on a perfectly conducting wedge and for observation points sufficiently far from
the edge of the wedge, may be written in terms of the diffraction angle dy. the
distance s of the observation points from the point Q of the wedge at which the

currents are evalusted, and the azimuthal coordinates @, ¢’ of the difiracted and
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incident ray with respect to the edge fixed reference frame, as follows:

_ with

1Q) = - 12 5(Q) (514,41 60) (4.10)
MU(Q) = -L22 Q) - imisi 4,8/ o) | (4.1b)
i(s;¢,4'; o) 1 [ («+(¢-¢')) + ,
= - (T3 pirgsat (4 - ¢
m(s; 6,¢'; o) T 2n ose (6 = 8]

A
+ cot (1——%—{2) Flkosa™(¢ - ¢')]
F {cot ("-r—t (;n+ ¢ )) Flkosa™ (¢ + ¢')]

+ cot (:%ﬁg) Flkosa™ (¢ + ¢')]}] , (4.1¢)

* _
at(y) = 2 cos? (2—""—%—-——’) : (4.14)
N?% being the integers that most nearly satisfy the equations
2rnN¥ — 4 = 4» (4.1e)

and E-'.i(Q), H YQ) denoting the incident at Q electric and magnetic field, respec-
tively. As before, the parameter n (wedge number) is related with the wedge angle
(WA) via (WA) = (2—n)r. Note, also, that the edge transition functions F(-) are
not normally associated with the Ryan and Peters form. It should be emphasized
that Ryan and Peters equivalent currents are valid for directions of observation
lying on Keller’s cone of diffracted rays. Knott and Senior (18] suggested a gener-
alization of the expressions of the equivalent currents in order to include arbitrary

directions of incidence and observation by deforming the term sin? o appearing in
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the denominator of eqs. (4.1a)-(4.1e) to the product sin Asin8' with 8, ' denot-
ing the angle of observation and incidence respectively in a predefined edge fixed
coordinate system. But their proposal is merely a postulate, since it is based on
intuitive symmentry considerations rather than any mathematical derivation.

Recently, Michaeli [19,20,21,22] proposed explicit expressions for the equiva-
'lent edge currents deduced from the exact solution of the canonical wedge problem
and valid for arbitrary directions of illumination and observation. His currents are
related with true currents flowing along the wedge surface, since their derivation is
based on the asymptotic relationship between the Physical Theory of Diffraction
surface radiation integral and the equivalent current line integral.

Equivalent currents, including higher order interaction effects, were utilized by
Sikta [4] for the computation of the off principal plane RCS of flat plate structures.
Although Sikta used a modified version of the currents of eqs. (4.1a)-(4.1¢), which
is conceptually empirical his results are comparable with those presented later
in [22] where the more rigorous Michaeli's edge currents were used. As pointed
out in Chapter I, Burnside and Pathak (3] employed the radiation integral of
the truncated equivalent currents to asymptotically identify a corner diffraction
coefficient after an empirical modification of the final result. A similar approach is
adopted in this chapter, using two types of equivalent currents, to develop an edge
wave vertex diffraction coefficient which incorporates the singular behavior of the
edge wave in the vicihity of the guiding edge and an edge diffraction coefficient

valid as the origin of Keller’s cone approaches the vertex point.
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4.2.1 Generalized equivalent currents. The half plane case.

Non grazing incidence

A plane wave illuminates a half plane as illustrated in Fig. 2. The problem as
already pointed out is essentially two dimensional. The total field can be expressed

in terms of the vector potentials

A=

e

v F=iyf (4.2)
via the following equations:

E=-VxF—juppo(I+k;2UV). 4 (4.3a)

)

H =V xA4-jugeo(T + k3?VV). F (4.3b)

where T is the unit dyadic. Furthermore, the total field can be viewed as a field
created by fictitious equivalent line sources flowing along the edge of the half plane,

so that one may write

i3 = [T 116,652 Golp, 21" ' (4.9)
(= /_ °; M'(5:8',¢':2') Golp, 2|2") d=' (4.5)
in which

- — o1\2 2
Golp, z|') = exp{—jkoy/(z - 2')? + p?} (456)

41r\/(z ~2')2 4 p?

is the free space scalar Green’s function, § is the vector pointing to the observer
in an arbitrarily chosen reference frame, ' is the angle between the incident ray
and the wedge and the superscript ¢ indicates the connection with the total field.
It is also reminded that the 5 and ¢ -directed components of the electric and

magnetic field can be expressed in terms of its z-directed components as indicated
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mathematically by eqs. (2.1a), (2.1b). Thus, from eqgs. (4.2)-(4.6), one obtains for

the z-directed components

Edd) = -jooue [ {I"GiA,4'2') Golp,2ls")

2
+ky? bq;z (1458, ¢'; ') Golp, 2|2'))} d2' (4.78)

He(@) = -jwoeo [ {M"(5:6',8'52') Golp,2l:')

, .
+h? Z3UE 8,45 ) Gol, 1<)} d (4.Tb)

which can be employed for a unique solution for I*, M!. Noting the convolution
type of the integrals involved in the integral equations (4.7a), (4.7b) the latter
can be formally solved with the aid of the Fourier transform with respect to the
variable z (the z coordinate of the observation point). It is also remarked that
the principal value of the integrals involved in eqs. (4.7a), (4.7b) with respect to
the arbitrarily chosen origin on the i-axis should be considered, along with the
definition of the Fourier transform [23]. Without presenting the details of the
derivation and restricting our attention to the diffracted te‘rm of the total field,
which is physically related with currents flowing in the vicinity of the edge, one

obtains the following expressions for the edge currents:

H(5p,¢'2") | 2exp(=jn/4)
MI(E ¢ ) fovarte

_ exp(—jkgs sin Asin 3')
y2sin Asin ' H{(kos sin Bein 8')
Yo Ei(')- :i0(5:8',¢'; ')
Zo Hi(2')-imS(8:0',¢';2')

(4.82)
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Now, the superscript f indicates relation with the diffracted field and the distance

s is related with the radial coordinate p via p = s sinB. Moreover,

i/(5:8',¢;2') 1 F|2kgs sin Bsin B’ cos? (i‘iﬁ')]
mI(5:0 g2 | sin®P cor (452)
F|[2kgs sin B sin B’ cos? (Q#)]
) ¥ ; (4.8b)
cos (£3¢)

Note that the same result can be obtained by merely dividing the diffracted field
with the two dimensional free space Green’s function. For large arguments of the
Hankel function and if the origin of the Z-axis coincides with the diffraction point
Q° the equivalent edge currents reduce to Ryan and Peters expressions presented by
egs. (4.1a)-(4.1¢). One can modify the above expressions for arbitrary directions of
incidence and observa.tion and spherical wave incidence by substituting the factor
sin? 3’ appearing in the denominator of eq. (4.8b) with sin #sin 8’ and s with tne
distance parameter L = 85’ /(s + &'), where &' denoting the distance of the source
from the point Q at which the equivalent edge currents are evaluated. Then, for

large values of the parameter L, one obtains

[ 1@ | <] wE@-ifLs.es.e)
M@ "o | 2o HQ)- im/(L:6,4:8',4)
where now

J(LiBg0,¢) | 1 |FlzkoLsinBeingcor? (45¢)
mi(Lig,:8,¢) | WP end cos (252
F|2koLsin dsin 3 cos? (452 ))
(%)

and { is again the unit vector tangent to the edge at .

(4.9a)

¥ (4.9h)
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The perturbation of the original expressions (4.8a), (4.8b) is based on the
same arguments stated by Knott and Senior and has no mathematical justifica-
tion. Evidently, the above representation can be generalized for the wedge case.
The final result is merely a symmetric perturbation of Ryan and Peters edge cur-
rents. It should be emphasized that asymptotic evaluation of the radiation in-
itcgra.l of the edge currents described by eqs. (4.92)-(4.9b) over a finite (possibly
curved) edge yields always a reciprocal result and the correct field for observation
directions in the Keller’s cone of diffracted rays. Besides, the more general expres-
sions (4.8a), (4.8b) can be used for corrections in caustic regions in the near field

of the wedge where the GTD related Ryan and Peters equivalent currents fail.

Grazing incidence

An interesting case arises when the incident plane wave grazes the edge of
the half plane (3' — 0). The equivalent edge currents that would support the
edge guided wave given by eqs. (2.13), (2.14) can be derived following a similar
procedure. However, in this case, the integral equations (4.7a), (4.7b) as 8’ — 0
yield an indeterminate form which implies an infinity of solutions for the unknown
edge currents. This ambiguity originates from the fact that grazing plane wave
incidence is essentially a theoretical idealization. Nevertheless, based on the dipole
excitation problem examined in Section 2.3, one can obtain expressions for the
equivalent currents which are physically reasonable. Beginning with the integral

equations:
ew _ [ 18 rew o gt 4 '
B = = [ {3 gIMeU S 655 Goloy )

+jwonoky ? E%[!‘"(:; 8',¢':2') Golp, 2| )1} d:' (4.10a)
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¢ = ‘/.:{‘9 (M(3: 4, ¢'; ") Go(p, 2|2')

+jwonokg? m[fe"'( 5:6',¢'12') Golp, 2|’ )]} (4.10b)

as 3' — 0, one may postulate

, I“(#,6',¢'iz) | _ 8exp(jn/4) /B Sol8'¢)
: M@, ¢'s2) Ik B kopsin )

(4.11)

exp(—jkoz){ osin(é/2) }
~ cos(¢/2)

where
Eqp sin(¢'/2) + Egy cos(¢' /2)
Jin?

is an excitation related factor.

So(8',¢') =

(4.12)

4.3 Michaeli’s edge currents in an oblique edge fixed frame.

For the general wedge case one obtains the following equations for the total
edge magnetic and electric equivalent currents excited at the point Q of the edge

of the wedge [19]:

1Q) = —E(Q)- 12]) sm(¢'/n){ 1

nkg sin? 3’ cos{(m — 7} )/n] — cos(¢'/n)

1 2
+cos[(1r - 92)/n} + cos(¢'/n)} BYQ)-i nko sin '
. { sin[(* — 11)/n]  pycot f' —cot Bcos ¢

sinv) cos{(m — 41)/n] — cos(¢'/n)

"“[(" - ‘72)/"] M2 C°tl3 — cot B cos(nx — @)
 sinyg cos[(w 72)/n]+co,(¢l/n)} (4.132)
_ It - 2jZo
MQ) = H (Q).'nkocinﬂsinﬂ'
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- VAR
siny) {cos{(x ~ 7)/n] ~ cos(¢'/n)}
sin|[(nx — 42)/n] sin(nx — ¢) }
sin 2 {cos|(x — 42)/n] + cos(¢'/n)}

(4.13b)

where the complex angles v 3 are defined by the equation

FACE 1V

Figure 21: Oblique edge fixed coordinate system for the definition of Michaeli's
equivalent currents.

ma=-jln(uyz+,/s},-1) (4.14)

along with the following choice of the branch of the square root in eq. (4.14):

Wet=-1 : p>1
\/,t’ -1= jh/pz -1 ; -l<p<1 (4.15)

"l\h‘z -1 i p<-=1
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The parameter ¢ depends on the coordinates 3, ¢ and ', ¢' of the observer
and the source, respectively, in terms of the edge fixed reference frame centered
at Q as well as the choice of the edge fixed system of coordinates itself, i.e., the
angle a between the unit vector { tangent to the edge at Q and the unit vector
o tangent to face 1 of the wedge at Q, as shown in Fig. 21. The latter implies
a nonuniqueness in the presentation of the Michaeli’s equivalent currents. For a

general a angle, uj is found equal to

__ sinasin3 cos @ + cos a (cos f — cos B')

pi(a) = inasing (4.16)

For the definition of ;g which is associated with face 2, ¢ should be substituted by
nm—¢and B, B’ by # — 3, # — (', respectively. If the classical edge fixed system

of coordinates is chosen, then a = 7/2 and p; becomes

p1(m/2) = sin B cos ¢/ sin §' (4.17)

On the other hand, if the &-;,xis is chosen parallel to the diffracted ray that
grazes face 1 surface, as suggested by Michaeli in [20], ‘.e., when a = §’ from

eq. (4.15) one obtains

. . ] !
m(ﬂ,)zsmﬂsmﬂ cos¢-:irclgsﬂ['3’(cosﬂ—cosﬂ) (4.18)

For a more systematic approach to the approximation of the edge wave vertex
diffraction mechanism, it is convenient to extract the physical optics components
from the total equivalent edge currents presented by Michaeli. In accordance with
[24], the total currents given by egs. (4.13a), (4.13b) can be split into the Physical
Optics current components MP°, IP° and the fringe current components M S, I !

with

1(Q) = I™(Q) + If(Q) ; M(Q) = MP(Q) + M/(Q) (4.19)
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Specifically, the Physical Optics components associated with face 1 of the wedge
are given by the following equations:

2;U(r - ¢') = ., sing'
kosin3' (u3 + cos¢') [E (Q)-f Zy sin B’
—l?i(Q) -{(cot B’ cos ¢’ + cot 3 cos ¢)] (4.202)

Q) =

2jZ¢ sing U(x ~ ¢')
ko sin 3 sin3' (p) + cos ¢')

while the fringe currents can be derived from eqs. (4.13a), (4.13b), (4.19)

MP(Q) = -HYQ)-i

(4.20b)

and (4.20a), (4.20b).

4.4 Vertex diffraction of an edge wave excited by a dipole.

An excitation dipole is placed in the close vicinity of the edge of a semi-infinite
wedge and at a distance s, (with kgs!. >> 1) from its vertex. The interaction
between the dipole and tli» edge produces an edge guided wave which, sufficiently
far from the dipole, can be treated as ray optical. This ray optical edge wave
is diffracted in uccordance with the generalized Fermat’s principle. In our case,
despite the direct field which is essentially the edge wave suitably modified for a
semi-infinite structure, the observer is reached by & vertex and, possibly, two edge
difiracted rays emanating from the vertex point Q° and the terminating edges
points Qf, Q3, respectively, where Qf, Q% are the origins of the classical Keller’s
cone of diffracted rays. The observer is in the illuminated or shadowed region of
the edge wave edge diffracted fields from the points Qf, Q3, if Qf, Q3 are points
of the semi-infinite edges (1), (2) or points of their extensions, respectively.

A uniform solution is investigated herein using the equivalent currents de-
scribed earlier in this chapter and ex.ited by the edge wave impinging on the
terminating edges (1) and (2). The “uniformity” of the solution requires the con-

tinuity of the total field at the shad: .- boundary of the direct field (edge wave)
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and the boundaries of the regions illuminated by the edge diffracted rays from
1» @5. Furthermore, the solution should remain finite at the extension of the

guiding edge. One may write for the total field
E'=E™.T+E§ Ultge) + E5Ultqg) + E° (4.21)

where E€¥ is the field produced by the dipole in the presence of an infinite wedge,
T is a heuristic transition dyadic which assures the continuity across its shadow
boundaries and its finiteness along the extension of the guiding edge, E‘f'z are the
edge diffracted fields with tQ§.2 denoting the t coordinate of the points Qf in
terms of the edges (1) and (2) fixed coordinate systems depicted in Fig. 10, and
E° is the vertex diffracted wave. It is reminded that U (+) represents the unit step
function (U(z) =1ifz >0,U(z) =0if r <0).

As before, our attention is restricted to face 1 of the wedge. The equivalent

currents presented earlier for grazing edge wave incidence at the point Qy of the

edge (1) may be rewritten as

. frew . {
2] H*%(Q1) -1 i(3c;ty) (4.22a)
ko 2

2520 HEY(Q,)-{ -
My(Qy) = —io—‘-’ ——-(%)——‘- my(3c;t)) (4.22b)

L(Q) =

where H¢¥(Q,) is the field produced by the dipole radiating in the presence of
an infinite wedge evaluated at the point Q), {; is ihe unit vector tangent to the
edge at Q; and {j, m; are known and, in general, slowly varying functions of the
observer’s location in the vertex fixed coordinate system and the distance of Q;
from the tip Q¢ of the trihedron. The wedge number n; is related now with the
wedge formed by face 1 and the plane surface defined by the edges (1) and (2).

Note also that a factor of 1/2 has been introduced due to grasing incidence. It can
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be easily shown using eq. (2.19) and the relationship

H(7) = Yo i x E(7)

which is valid for ray optical waves, that

ey’ a . ' k -

Aev(Q)) - iy = —jkY win® 2, C(v) AS(s', ¢') o, ;,1,°"’ &' (42)
with

= \/;? + tg - 2118 cosay . - (4.24)
As before,

AL(P ¢') = o7 pE sinvd + 5y cosve)

and the constant C(v) is defined by eq. (2.17).
It is presumed that the edge and vertex difiracted edge wave associated with
face 1 of the wedge can be approximated by the radiation integral of the equivalent

currents I3(Qy), M1(Q;) flowing along the edge (1), which in the Fresnel or the

Fraunhofer region of the edge can be explicitly written as

E]('c) = J"o Zg sin °lC(V)A (P ’¢)3c
JTIRx Rx dyinteity) + R x dymyicity)

~1exp{-jko(R +r;)}
A sl (4.25)

with R = ||, — t;f}]| and R = (5. - t,1;)/R

For large values of the parameter kg the asymptotic evalution of the radiation

integral reveals a vertex contribution and, also, an edge diffracted term. if
cosaj(l —cosd)+sinay sing cos¢ > 0.

i.e., if Qf lies on the edge (1) itself rather than on its extension. These two terms

are examined separately in Sections 4.4.1 and 4.4.2 respectively.
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4.4.1 Edge wave vertex diffracted field.

Interpreting the end point contribution to the radiation integral as a vertex

diffraction term,’one obtains the approximate relationship

_ B '
§(5) = kg Zo sin® ay A(p', ¢') SRAIR0loe + 5c))

4drsc sy
Gi(5e) I2, (ko) (4.26)
where we have substituted
G§(5e) = bc x bc x 1y i1(5c;0) + 3¢ x iy my(3¢;0) (4.27)

and I% (ko) denotes the end point contribution to the integral

= - ik d
L5 exp{-iko(R+ro)} dty .
Referring to eq. (3.8) one writes

I% (ko) = T(v)kz" exp(jvm/2) exp{-sko(sc + L))
.________1_"'_.‘-1[_{00“;(5:;32)]
[sinaj sin 3 cos ¢ + cosay(1 ~ cos B)}¥

(4.28)

in which the edge wave transition function has been defined by eq. (3.13). The

vertex difiracted field associated with face 1 of the wedge becomes

. !
ES(5) = expli(v + 1)7/2} T(v) C(v) Zo AS(¢', &) 2. {":::(:ff )}
¢%¢
e F<, [koa}(ac; o¢)]
Gilae) [eot aj(1 — cos B) + sin B cos @)V

(4.29)

Michaeli’s equivalent currents

It has been pointed out that Michaeli’s equivalent line sources can be derived
from the asymptotic reduction of the surface radiation integral of the true surface

currenis evaluated from the canonical rolntion and Howing over the faces of the
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wedge and can be split into geometrical optics and fringe current components.
Moreover, when these currents are truncated to reveal an end point effect, one
should be cautious about the choice of the parameter i involved in the expressions
of these currents, i.e., the choice of the edge fixed coordinate system, so that the
terminated equivalent edge currents represent correctly the end point effect of the
truncation by the edges of the trihedron true surface induced currents. In this
context, a correct choice of the parameter y; for the Physical Optics component

of the equivalent currents, using eq. (4.16), is the following:

sin ay sin Oy cos ¢y + cos aj(cos B) + cosay) (4.30)
sin? ay )

py = pi(ag) =

so that the unit vector ¢ in Fig. 21 is parallel to the guiding edge, whereas for the

fringe currents the proper choice is

sin oy sin B} cos ¢; — cos xj(cos By + cos ay) (4.31)
sin? a '

wf = p(r —ay) =

and, now, ¢ is parallel to the edge diffracted ray from Q¢ that grazes the plane of
face 1. In the above equations 31, ¢, are the elevation and azimuthal angle of the
observation point in terms of the -dge (1) fixed coordinate system centered at Q°.

The previous discussion also suggests the decomposition
G§(3) = G17°(3) + 617 (3) (4.32)

where the superscripts po and f imply connection with the physical optics and
fringe current components, respectively. Not surprisingly, using eq. (4.30) for the
definition of the parameter yr in the eqs. (1.20a)-(4.20h) of the physical optics
equivalent edge currents and after some tedious manipulation, which, however,

involves only elementary operations, it can be shown that:

GiP(5) = -8 cotg— (4.33)
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so that the vertex diffracted field assumes the approximation
E(3.) = E“P°(5.) + ES (5¢) ‘ (4.34)

in which E9P(5;) is the field given by eq. (3.10) or egs. (3.112), (3.11b), while the

fringe currents related wave is equal to

- EN(3) = expli(v+1)x/2}T(v)C(v) 2o AL, &)
exp{-jk 0(3';' + )} F(2koL,sin? ?)
4nsc sl 2
IR A o8 CHEATA)
“{lcot ay(1 = cos B) + sin B cos §)¥
G5! (5e) FE, [koad(5y: o))
[cot az(1 — cos 3) + sin B cos(nx — )]V

(4.35)

The vector functions C-:"f’ (3¢) (I = 1,2) are related with the Michaeli’s equivalent

currents at Q¢ via the equations:

GI(5e) = if(Qe)ic x de x iy + m(Qe)de x 4y (4.36)
where
fiery | _ | wen || e s
m{(Q°) my(Q°) mP(Q°)

and 4;(Q°), m(Q°), if° (Q°), mf" (Q€) are described explicitly by the expressions

HQ) = - 1 {"{l cotay + cot fycos @y sin|(r — 951)/ny)

nsin sin ) 1 - cos{(x — 911)/my)
p{z cot o) + cot fljcos(myw — @) sin|(® = 42)/ny] ‘
N
sin 9o 1 + cos|(x - 712)/"’”
(4.3R)




o 1 singy sin|[(x — 1)/ny]
ml(Q ) = -n‘ sin aj gi“ﬂ‘ {sin ™m 1~ C“[(ﬂ' - ‘"l)/n‘]

_sin(npr - @) sin|(x — y3)/ni) }
sin vy 1 + cos{(7 ~ ¥2)/ny) (4.39)
and
PO; e ___cota;-cotﬂ;cos¢, 40
Y (Q ) sina‘ (] +”{) ( 4 )
Q) = - = (441

sina;sinf; (1 + #{)
The index [ assumes the values 1 and 2 for the edges (1) and (2) of the trihedron,
respectively. The elevation and azimuthal angles 8; 9, ¢; 3 of the observer in terms
of the coordinate systems usociateci with the edges (1) and (2) and centered at
the tip Q° are related with the principal spherical coordinates 8, ¢ via the easily

verified equations e

cos ) =sina;sinfcos¢ — cosajcosf ;

sin ) = |\/1 — cos? B, | (4.42)

cos 3; = sin ag sin B cos(nr — @) — cosazcos 3 ;
sin B2 = |\/1 - cos? 3| (4.43)

cosa; sin Bcos g+sinajcosf |
&in f; '

sing; = Si5n¢ (4.44)

_cosazsinfcos(nx—g)+sinazcos
nn '

cosd) = ~

cos ¢y =
sin ¢q = SinAsn(nr=9) | (4.45)

sin 8,

In accordance with eq. (4.31) the parameters "l'l‘ u{z should be chosen equal to

51




§ _ sina;sinf,; cos ¢y — cor aj(cos B; + cos a;)

= 4.46
iy sin? oy ( )
sin a; sin B cos(mw — — cosayf{cos B + cosa

sinﬁg ‘
The above expressions simplify considerably for the case of the plane angular sector,
‘with aj = a2 = a,a) = a3 = a. Without presenting the details of the derivation
which again involves only elementary manipulations, for the field related with the
fringe currents one derives
—520 e, 1 oy eXP{=dko(sc + 5)}
—=— A(p19) ,

2 drsc\/sl

G (#ci0) e jylkoa? (ic; o¢ )]

Edg) =

F(2koLcsin® = 4.48
(2koLesin 2)\[cota(l-cosﬂ)+linﬂcos¢ (4.482)
where the function G/(3¢) is given by
Sef(5) — 1 A Beg(B,9) + beg(B9))
G7() cos(2a) + cos d [ Aeinf + sin? asin B cos(6/2)
(4.48b)
with
cos § = sin(2a)sin B cos ¢ — cos(2a)cos f (4.48¢)
eg(8.¢) = —(cosa+ cos B ) (sin a cos B cos § + cos asinf)
-[sin a cos $3(1 — cosacos By) — cos’acinﬂll
+sin® asin dsin g, (4.484)
eo(B,8) = sinasind(cosa + cos/3))
«[sin a cos ¢3(1 - cosa cos ) - cos? a sin B
+ sind a sin @) (%in o cos Fcos ¢ + cosasin B) (4.48e)
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and the angles 3;, ¢; are defined by eqs. (4.42), (4.44) for a3 = a.
For the particular case of the right angle angular sector (a = x/2) it readily

follows that

G (5e37/2) = B (cot g— — csc g) (4.49)

and the total corner diffracted field assumes the simple representation

— y —— y '
EC(;C) ~ ]ZO AC(pI,¢I) exp{ ]kO("C + "C)}

V2 47rsc\/.s—'c

F(2koL, sin? g) F_c_l/z[koLc(l - \/1 — 8in? A cos? ¢)]
. sing vsinfcos ¢

A
(4.50)

where A¢(p',#') is defined by eq. (2.21). In a more familiar notation
1 Eb,(Qc) sin %1 + E;,(Qc) cos %i
V2nko \/ sin &'

F(2koLcsin? §) F2y jpl2koLe(1 - y/1 - sin? § cos? ¢)]
sin g Vsin B cos ¢

exp(=7kosc) 5 (4.51)

3¢

Es,) =~

Geneneralized equivalent currents

The vertex diffracted field derived with Michaeli’s equivalent currents has a
clear physical interpretation in that it is essentially the field produced by the super-
position of the truncated physical optics currents that would flow over an infinite
wedge and the fringe currents excited by the terminated edges for edge wave grazing
incidence. However, it does not satisfy the boundary conditions on the trihedron
surface. Although the latter may be a minor concern for Fraunhofer region obser-

vations, as far as the earlier derived equations serve as a good approximation of the
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region observations, as far as the earlier derived equations serve as a good approxi-
mation of the vertex diffracted edge wave, it would be interesting to obtain a vertex
diffraction coefficient which would satisfy the appropriate boundary conditions on
the surface of the trihedron. For this purpose one may introduce tl\; generalized
‘equivalent currents described for the half plane case by eqs. (4.92)-(4.9b). The
approach is essentially empirical since the generalized equivalent currents are not
necessarily related with true surface currents, but merely is a symmetric perturba-
tion of the edge currents that would produce the correct edge difiracted field from
an infinite edge.

For simplicity the plane right angular sector rather than the complex trihedron
problem is examined. The total vertex diffracted field is related with the end
point contribution to the radiation integral of two equivalent line sources: the first
associated with the guiding edge (edge (0)) which is grazed by the dipole excited
field and can be derived by a heuristic modification of the currents of eq. (4.11),
and the second associated with the terminated edge (edge (1)) and evaluated from
eqs. (4.92)-(4.9b) for edge wave incidence. The edge wave equivalent currents given
by eq. (4.11) are clearly valid only for plane wave incidence which is also evident
in their ko 1/2 dependence rather than the kg ! dependence of Ryan and Peters as
well as Michaeli equivalent currents. The empirical modification concerned with
the edge wave dipole excitation problem involves a multiplicative introduction of
a “reflection coefficient” similar to that suggested by Sikta in [4], namely

rev = - xp(=in/4)
4 \/ nkos!.

as well as the multiplication by the edge wave transition function

(4.52)

F< jy(2koLe sin? g)
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which assures the finiteness of the total solution as 8 — 0. The corner diffracted
field associated with the guiding edge is then equal to
. {1 . !
j EZ,,(QC) sin %- + E;,(Qc) gin %—
V2 kg \/;n B sin 8’

. . ¢ . ¢ F(2koLcsin?8)
«(8 sin 3 + ¢ cos 5) sing

E§(s.) =

-FS ) /o(2ko Lc sin® g-) (4.53)

Note that the field exhibits a similar qualitative behavior with the edge wave corner
diffracted field derived in [4] from a limiting manipulation of the corner diffraction
coefficient. The term associated with the terminated edge is written
)~ ) E}(Q°) sin + Ey(Q°) cos %
V2 kg \/ sin '
(2ko L sin? B; cos? %)
sin 3} cos %‘-
Fﬁl/z[koLc(l - \/1 — sin? 8 cos? ¢)]
Vvsin g cos ¢

The total vertex diffracted field, however, cannot be simply obtained from the

(ﬂ sin¢@ + ¢ cos B cos ?) F

(4.54)

superposition of Eﬁ and Ef, because the effect of the truncated currents may be
double counted. Therefore, a modification of the final expressions is necessary in
order to obtain results compatible with those presented earlier.

Although the new expressions for the field satisfy the appropriate boundary
conditions on the half plane, they exhihit a discontinuity on the plane of the sector
as the boundary 8 = 0 is crossed, i.e., the field has a definite finite value as
B — 0 on the ¢ = = half plane, while it vanishes on the ¢ = 0 semi-plane. This
inadequacy is also present in Sikta’s expressions of the edge wave corner diffracted

field. Note also that the field expressions exhibit a ¢-directed component which
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does not vanish, as it should, on the plane of the plate. The same problem occurs
in the expression of the corner diffraction coefficient and is coherent with the
nature of the truncated equivalent currents which are derived from the half plane
solution. It can be possibly overcome by incorporating higher ordc.:r interaction
effects between the currents flowing along edge (1) and the adjacent edge (edge

(0)), which, however, appears cumbersome.

— 2a ———

ot - ‘ DIPOLE
- - - — — —
W
120°
v

Figure 22: Angular sector geometry for the comparison of the generalized and
Michaeli’s equivalent edge currents.

The generalized equivalent current field associated with the edge (1) (GEC
(1)) is compared with the Michaeli’s current (MEC) and Physical Optics (PO)
solution in Figs. 23 through 28 for an angular sector with a = 120°, the geometry
of which is shown in Fig. 22. The direct dipole field is not incorporated in any
of the above calculations. The singularity of the field predicted by the Physical
Optics solution is evident in Figs. 23 and 25. The three approaches show goo/|

agreemen! for small values of the elevation angle 13 and sufficiently far from the
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plane of the angular sector. At ¢ = 1800 the generalized equivalent current field
presents a non-vanishing ¢-directed component, which is not physically acceptable.
However, it satisfies the boundary conditions on the sector surface. The solutions
diverge at the vicinity of the guiding edge (i.e., when 8 — 180°). But in that

region the total field is dominated by the singular direct dipole field (edge wave).
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4.4.2 Edge wave edge diffracted field.
In the general wedge problem the point Qf lies on the semi-infinite edge (1) if
cotay(l — cos3) +sinfcosg > 0.

The angle of diffraction B in this circumstance is defined by the equation

singf = 220 (4.55)
!
where
sy = \/'zQﬁ 482 - 21q; s\ cosa) (4.56)

and the distance tQ; of the point Qf from the tip Q€ is given by

scs sin{ay + By)
ch = 5 -
1 s.sinaj + sc8inf)

(4.57)

The non-uniform representation of the edge diffracted edge wave from Qf
(non-uniform with respect to the singular behavior of the impinging edge wave as
well as the discontinuity at the boundary of the illuminated by the diffracted field
region) can be obtained either using UTD or, equivalently, evaluating the isolated
stationary phase point contribution to the radiation integral of the edge currents.
(Note that both types of equivalent currents utilized earlier for the approximation
of the vertex diffracted field result in the Ryan and Peters equivalent currents when
evaluated at the point Q). For instance, employing UTD the edge diffracted edge

wave reads

per=y 1 v, e exp(~jn/4)
l(’c) = ¢1E;'1(Q])2n]\/msinﬂ;

[cot (’-’—2‘;—"4-’-) FlkoLya*(é1)]

\ zn‘?’l) FlkoLna'(%)]]
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¥ “—7!1——; exp(—jkos)) (4.58a)

a(s; + 4
where
Ly = 18] 2 e
1= o+ sin® §j (4.58b)
“and
g = ‘/125 + 92 - 2tQ§a¢ cos_ﬂ; . (4.58¢)

The incident edge wave E;}" can be derived from eq. (2.19) and is given by
1

-— y '
ES(Q) = ik 20 Cw) A5(6' ) in? " oy i} H2T0) (4.59)
e |

Note, also, that a factor of 1/2 has been introduced into eq. (4.58a) due to grazing
incidence [25]. Clearly, as Qf — Q°, -f(i}) becomes infinite. The singularity of
the fieid in accordance with the development in Appendix A can be compensated

with the multiplicative introduction of the transition function

FZ_y|2koLe, cos? (‘_‘-L%ﬁ!)]
where

Fo_1)=Fo,0) (4.60)
with the star denoting complex conjugate. The large parameter L., equals

!
L" s + "'l ( )

Besides, the same modification factor insures the continuity of the total diffracted

field (edge and vertex difracted waves) at the boundary plane

cosaj{l —cos3) +sinaysindcosis =N (4.62)
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To illustrate the resulting continuity of the diffracted field at this boundary the
particular case of the plane angular sector (v = 1/2; a; = a) is examined. In this
circumstance the proposed uniform approximation of the edge diffracted field may

be written in the following manner:

2o A%(p'\¢') |slsina + s.sin By ) '
1ema \ eetior(er + ) exp{~jko(s3 + #))}
a+Bj)]

F(2koLe sin? 85 cos? %1) FZ,/gl2koLe cos? (-—-2 ;
sin Af cos %l \/‘m 1

E(&) =~

(4.63)

On the other hand, using the fact that Michaeli’s equivalent currents reduce to
those of Ryan and Peters at the origin of Keller’s cone of diffracted rays, or alter-
natively employing eqgs. (3.18), (4.34), (4.482)-(4.48¢) (for @ = a}), it can be easily

shown that the corner diffracted field, as @ — Q, equals

iZoA(p',¢') exp{~jkolsc + &.)} F(2koLcsin? §)

E(s, - =
(%) 4272 \/sina ac\/s:: cos %‘
L [Fapltkelecod® (542)1] )
2 o V/cos o + cos 3} 2 (4.64)

Then based on the definition (3.13) of the edge wave transition function and the
relationship (4.63) it is trivial to show that the total diffiracted field remains con-
tinuous as the boundary of the region illuminated by the edge diffracted field is
crossed. The transition function F_,(-) for the general wedge case appears as a
type of caustic correction factor in the sense that it compensates the singularity of
the edge difiracted field at the extension of the guiding edge. However, in our case
the singularity arises from the behavior of the incident field on the edge rather

than the focusing of the difiracted rays into a caustic.
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4.4.3 A transition function for the guiding edge diffracted field.

As pointed out in Section 2.5 the rigorous solution of the radiation of a dipole
in the presence of an infinite wedge predicts a singular field at the edge of the
wedge, in consistency with Meixner’s edge condition. However, this singularity of
- the edge wave is not physically acceptable in the extension of a semi-infinite edge.
For overcoming this discrepancy vhe multiplicative correction of the edge wave
associated with a semi-infinite or finite edge with the use of a suitable transition
function (in general transition dyadic) has been suggested. Such a transition func-
tion can be empirically derived by requiring the continuity of the total field at the
shadow boundaries of the direct wave (edge wave), namely at the planes ¢; 2 = =.
This continuity was guaranteed by the UTD evaluation of edge diffracted field as
expressed by eqs. (4.58a)-(4.58¢c), but it is violated in the paraxial region after
the introduction of the function F;_,, which assures the uniformity of the total
diffracted field. Obviously, the edge wave can be multiplied by a similar transition
function so that the total field retains its continuity in the paraxial region as well
as outside of it, where the transition function receeds to unity. In addition, such a
multiplicative correction would yield a finite total field along the extension of the
edge.

The edge wave contribution to the total radiated field by the dipole-trihedron
configuration is given explicitly by eq. (2.19) which, for the half plane case, reduces
to eq. (2.20). For the plane angular sector, a convenient modification of the edge

wave reads:

\/F(-!ZOCXP(J'"M) ‘Tl
- 2”\/5; A (P v¢ )
|Bo cos By sin(¢/2) + ¢ cos(¢/2)]

Ecw(;‘_) =
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F_e.l/zlszLe sin? %’] exp(—7koso)
V/sin By S0

with sg denoting the distance of the observation point from the dipole and fy is

(4.65)

the elevation angle of the observer in the guiding edge fixed coordinate system
centered at the point of the projection of the dipole onto the edge. The continuity
of the field at the boundary ¢ = 0, 1 = 7 is shown trivially by noting that, for
¢=0,00=7—a—f"

4.5 Discussion and numerical results.

The edge wave vertex diffracted field is a higher order term with respect to
the large parameter kg in the asymptotic solution of the radiation of a dipole in the
vicinity of the edge of a trihedron. Nonetheless, it contributec significantly to the
field especially in the paraxial region of the guiding edge and along its extension.
And its major contribution concerns the (-directed component of the field. The
latter, as pointed out in the discussion of the Physical Optics solution, is due to
the accumulation of electric current flow lines in the vicinity of the guiding edge
excited by the ray optical edge wave, which is consistent with the theoretically
predicted singularity of the field as the edge is approached.

The solution based on Michaeli’s equivalent currents is essentially an asymp-
totic PTD approach, in that a fringe current effect due to the terminating edges is
added to the uniform edge wave currents. The rigorness of the approach may be
questioned at this point, since the derivation of the fringe edge currents assume an
infinite edge and uniforin plane wave illumination. However, the field is expected to
retain its singular behavior in the vicinity of the vertex, which, moreover, does not
contradict the “tip condition” (i.e., the behavior of the field in the neighborhood

of a vertex) as investigated rigorously by several authors. Besides, the addition of
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the fringe current to the physical optics current effect improves the total solution
as shown in Figs. 29-34, where these results are coinpared with moment method
ones. It should be emphasized that the solution attempted in this chapter by no
means presents a complete rigorous representation c;f the tip diffracted field, but
it merely includes the information of the truncation of known components of the
currents flowing over the edge surface and can serve as a good engineering approx-
imation to the problem. Again in a PTD context the completeness of a solution
requires the addition of a vertex current component, i.e., a current excited by the
vertex of the trihedron, which however remains unknown and it does not appear
possible that it can be extracted from the rigorous solutions (1,2].

Comparisons of the calcualted field (denoted as MEC on the graphs) with
moment method results (MM) are made in Figs. 29-34, for the square plate shown
in Fig. 12. The direct edge wave (EW) properly modified in accordance with the
discussion in Section 4.4.3 is also plotted so that the effect of the corner diffracted
fields is better illustrated. Note that in Fig. 29 the edge wave edge diffracted wave
has been added to the direct dipole field (EW+EWED).

The field evaluated with the equivalent current method shows good agree-
ment for those flat plate geometries where the dipole is placed in the close vicinity
of one of the edges of the plate and sufficiently far from its corners, especially
in regions where contributions from other diffraction mechanisms other than the
corner adjacent to the guiding edge are known to be negligible. This becomes
evident in Figs. 29-34, where the agreement between the moment method data
and the calculated field progressively improves for larger values of the ¢ angle. In
fact, for ¢ = 60%, other mechanisms such as diffraction from the remote corners
of the square plate as well as double and triple edge diffraction may contribute

significantly, while their effect diminishes as ¢ — 180%. Our approximaic analysis
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also improves when the paraxial region is approached (8 — 0), where, as a matter
of fact, the total field is stronger. The latter justifies the validity of the asymp-
totic analysis which resulted into the multiplicative introduction of two transition
functions as well as the choice of the correction factor for the direct dipole field.
Unfortunately, the ¢-directed field does not exhibit an analogous agreement basi-
cally because the analysis does not include secondary mechanisms which clearly
contribute significantly to the pattern of that ; olarization.

The results also reveal a small variation of the total field with respect to the
azimuthal coordinate (angle ¢), in contrast with the relative large changes of the
calculated pattern in the elevation plane. The ¢ dependence becomes significant
only at lower cuts where the contribution from the opposite edge and its two
adjacent corners is appreciable.

The second example examined involves also the radiation of a small monopole
in the close vicinity of one of the edges of a rectangular plate, but now in differ-
ent distances from its corners. The geometry of this monopole-rectangular plate
configuration is depicted in Fig. 35. The calculated field is compared again with
moment method results as well as measured data, as shown in Figs. 36, 37 on the
azimuthal planes ¢ = 180°%, ¢ = 1500, respectively. The accuracy of the measured
data deteriorated for measurements in smaller azimuthal angles, where the support
of the structure influenced significantly the measured radiation pattern. In Fig. 36,
a ram has been placed around the remote corners and the opposite edge of the
rectangular plate, so that their effect in the total pattern is reduced. Clearly, the
agreement is better in this case (Fig. 36), in contrast with the results of Fig. 37
where the ram was removed.

It should be noted that neither the Physical Optics solution nor the equivalent

current formulation are expected to yield accurate results for small angular sector
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angles (a << m/2). In this case a strong coupling between the two edges forming
the sector occurs, which is not encountered in the evaluation of the radiation
integral of the currents flowing along the edge (1). Moreover, when a — =, the
Physical Optics corner diffracted field vanishes and the total solution reduces to
the edge wave over an infinite wedge, whereas the same property is not true for the
equivalent current formulation of the vertex diffracted field. The latter, therefore,

fails in cases of very wide angles, which require a more careful treatment.
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Figure 29: Far field f-directed field at an azimuthal angle ¢ = 60° for the square
plate of Fig. 12.
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Figure 30: Far field f-directed field at an azimuthal angle ¢ = 90° for the square
plate of Fig. 12.
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Figure 31: Far field B-directed field at an azimuthal angle ¢ = 120° for the
square plate of Fig. 12.
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Figure 32: Far field -directed field at an azimuthal angle ¢ = 135° for the
square plate of Fig. 12.
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Figure 33: Far field f3-directed field at an azimuthal angle ¢ = 150° for the

square plate of Fig. 12.
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Figure 34: Far field j-directed field at an azimuthal angle ¢ = 180° for the
square plate of Fig. 12.
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Figure 35: Geometrv of the monopole-rectangular plate configuration used for

coruparison with measured data.
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CHAPTER V

Conclusions

The major objective and motivation of this study was to describe approxi-
mately the edge wave diffraction mechanisms associated with the interaction of an
edge wave and the vertex of an ideal trihedron as well as two adjacent vertices in
a realistic three dimensional structure containing finite edges. These mechanisms
may contribute significantly in the radiation pafterns of several antennas (such as
rectangular horns) and the RCS of edge structures investigated with UTD tech-
niques, and therefore their incorporation improves the total UTD solution and
extend UTD as a powerful high frequency theory.

Explicit expressions of the edge wave were presented in Chapter II, derived
from the canonical half plane and infinite wedge problems. The investigation of
such idealized configurations was dictated by the need of a complete definition of
the edge waves and a better understanding of its behavior.” It was found that the
edge wave, which, independently of its excitation, is essentially an edge guided ray
optical field, highly dominates the paraxial region of the edge due to its singular
behavior there. These characteristics imply that there must be a strong coupling
between antennas placed close to the edge of a wedge (which has been already
proven by Buyukdura [7]) and between two adjacent vertices in a polyhedral body,
as found by Sikta [4].

The next simple configuration examined was the trihedron (a truncated
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wedge), as a first step to the approximation of more complex geometries. A dipole
radiating in the close vicinity of one of its edges produces an edge wave which
behaves essentially as a ray optical field in the vicinity of the vertex, provided
that the distance of the excitation dipole from the tip is sufficiently large. To
approximate the vertex diffracted wave a Physical Optics approach was adopted.
The latter was improved in Chapter IV, by adding to the uniform current a fringe
current component flowing in the vicinity of the terminating edges. Although,
the approach is neither rigorous nor complete from a PTD point of view, it yields
comparable results with moment method as well measured data and can be used
as a ﬁfst engineering approximation to the edge wave edge and vertex diffraction
problems.

Within the limits of our ray optical approximations the results established
in Chapter IV can be possibly utilized for the examination of the double corner
and edge edge wave diffraction mechanisms, with several practical applications.
The latter, being also a possible extension of the present UTD so that it may

incorporate higher order diffraction mechanisms, awaits future work.
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APPENDIX A

A Uniform Asymptotic Approximation of the Integral
Ip(k) = [§° G(t)t~P~1dt for R(p) < 0

In the above integral G(t) is a slowly varying continuous function of ¢t. More-
over, let the large parameter k have a small negative imaginary part, i.e., it is
presumed that the medium of propagation is slightly lossy. The phase function
g(t) is stationary at the point t, (g'(t,) = 0). Since in our applications g(¢) ex-
presses the negative sum of the distance from a point Q on a straight line in space
to two discrete points not on this line , with ¢ denoting the signed arc length
from the origin (¢ = 0) to the point Q, then g(t) is negative definite and attains a

maximum at ¢,. In this case it can be shown that

g'(0) = sign(t,)lg'(0)| (A1)
and

g"(t) <0 ; for every real t. . (A.2)

For convenience, it is assumed that egs. (A.1), (A.2) are true in the following
analysis. Besides, the final result can he easily generalized for a phase function
not satisfying the above imposed properties.

For t, > 0 the major contribution to the integral Ip(k) arises from the vicini-
ties of the stationary phase (¢ = t,) and the end point (¢ = 0), which coincides

with the branch point singularity of the integrand. We examine the asymptotic
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hehavior of the integral Ip(k) for the particular case where p = —1/2. An evident

transformation of variables is then £ = /¥, which yields the equivalent form
oo .
Iyjak) =2 [ H(E) exp {ikh(€)} de (A3)
where we have set
H(§) = G(€%), ME) = 9(€?) (A4)

Since g(t) is stationary at t,, where t, is real, then h(£) exhibits three collinear,
equidistant saddle points at g = 0,£) 2 = +/%,. (Note that §; 2 may be imaginary

if f, < 0). A convenient transformation in this circumstance is [28]
h(€) = ag — (a + #%)? (A.5)
It readily follows that

ao = h(£1,2) = g(ts) (A.6)

o = —sign(t,) |y/h(€1,2) - B(0)] = —sign(ty)1y/g(t,) = 9(0)|
Provided that a is not very large the integral I_,/5(k) can be approximated by
Iyp= 2G(O)j—f|.=o [ exp (iklao - (@ + )} ds (A7)
Using
R"(0) = 24'(0) ; K"(€1) = 4t.9"(t,) i h4)(0) =124"(0) (A-8)

it is not difficult to verify that the mapping derivative at s = 0 for a sufficiently

small equals to
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P, _ [ 2 _ 2lal z[ 2 ]1/4
ds la=0 lg'(0)] ~ \l Itag"(ts)l 1g" (0)] .

For the details of the derivation of eqs. (A.8), (A.9), which are useful in the

examination of the limiting behavior of the asymptotic solution as a — 0 (or
t, — 0), the reader is referred to (28]. The integral involved in eq. (A.7) can be
expressed in terms of the parabolic cylinder function of order —1/2. In particular,

one obtains

V7 exp(-jr/8)
(2k)1/4

I_ypo(k) = G(0) exp {jk(ap — a?/2)} x

2|a|
lg'(0)]

We can employ the formula [29]

D_) alexp (57 /4) a V2K] (A.10)

V2r

I'(-p)

for p = —1/2 and rewrite eq. (A.10) as follows:

Dyl z) = exp(~jpr) Dp(~z2) + exp{~j(p +1)7/2} D_p_1(jz) (A11)

2
exp {jk(ao — a?/2)} ig_'l(‘-(’)l).l °

V7 exp(—jn/8)
(2k)1/4

i D_yplexp (j/4)la|V/2k]
! +v2exp (-jn/4) D_yplexp (- jn/4)lalV2K] it, >0

I_y/5(k) = G(0)

(A.12)

k D_y/alexp (j/4)lalV2K] i1, <0

It is reminded that the above representation is valid for small values of the param-
eter a. An approach valid for larger values of a appears in general cumbersome.
However, one can simply perturbate the original solution given by eq. (A.12), to

obtain an asymptotic approximation in which the stationary phase contribution

would reduce to the well known result for an isolated stationary phase point as a
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becomes large. In particular, for f, > 0 using eq. (A.9) one writes

I_ya(k) —¢%; 2 exp {jk(ao - a?/2)}y/2la] x
{j | (o 1 D_1/zlexp (7/4)|al V2K] +
V2exp(-jn/4) 7‘%&"‘(’;‘7, D_yjolexp(—jn/4)lelV2E]}  (A13)

" From the asymptotic form of the parabolic cylinder function of order —1/2 [29],
for |a|]v/2k > 1, one obtains

exp (j/8) exp (jka?/2)

VielV2E

Substituting the above expression into the second term of eq. (A.13) it yields the

D_llz[exp(—jn/4)la|\/ﬁ] =~

isolated stationary phase contribution

G(t, V2n .
Ity pth) = 2 \/klg—’(' exp {iklg(ts) - x/4]}

A transformation similar to that of eq. (A.5) cannot be applied in the case of
an arbitrarily negative p, because the resulting integral cannot be reduced into
closed form expression. To obtain a uniform asymptotic aproximation we adopt a
more empirical approach. Namely, it appears convenient .to consider a quadrature
approximation of the phase function g(t) in the neighborhood of the end point t =
0, at which, as mentioned before, the integral presents a branch point singularity

"(0)
9(1) = 9(0) + g'(0)t + =—— (A.14)

Then, based on this approximation the behavior of the end point effect and the
coincident branch point singularity is examined. After some elementary manipu-
lation, which follows the same steps with the particular case examined earlier one

finally obtains the asymptotic result:
I)(k) = G(0)T(~p)(2k)P/? exp (jpn/4) exp {jklg(0) + a?/2]} x
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1o)|P | €xP(~ip™) Dplexp (in/4)lalVZE] ;t, >0
[l%HJ] (A.15)
Dplexp (j=/4)|alV2k) it <0
where now .
) (A.16)
2|9"(0)|

It should be noted that the above equation represents the end point effect only.
Evidently, it exhibits an abrupt phase change of exp (jpr) as the stationary phase
point passes through the origin. This discontinuity should normally compensate
the discontinuity of the stationary phase contribution to the integral Ip(k) in order
for the total asymptotic solution to remain uniform across the boundary ¢, = 0.
Such a stationary phase point effect which guarantees the uniformity of the total
solution is derived by a heuristic multiplicative correction of the isolated stationary
phase contribution with «ne proper transition function.

The substitution

Fi(ka®) = exp(—jpr/4)(V2kial)™F exp(jka®/2) Dplexp (jx/4)la|v2k]

(A.17)
furnishes an alternative expression for the end point contribution, namely
I3(k) = G(0)T(~p) kP exp (—jpm/2) exp {jkg(0)} [g'(O))F FS(ka?)  (A.18)
where the branch
(-1)? = exp (jp7)

should be chosen. In the above equation Fy(-) behaves essentially as a complex
transition function: it reduces to unity for large values of its argument and com-

pensates the singularity of g'(0) as the stationary point approaches the end point
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at t = 0. For a detailed description of the behavior of the transition function F5(-)

the reader is referred to Appendix B.
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APPENDIX B

Edge Wave Transition Functions

Two types of transition functions are extensively used in the examination of
the edge and vertex edge wave diffraction mechanisis arising from ihe integration
over ithe singularity of the edge wave which coincides with the end point of the

infegration path:
o The edge wave vertex transition function F<,(z) -
¢ The edge wave edge transition function F€ (z).

where # > 0. The latter for every z is the complex conjugate of the former, which

is related with the parabolic cylinder function of order —v via

F< (z) = exp(jin/d)(2lz])*/2 explilz]/2) P-vlexp(in/4)y/2Iz]] (B.1)

For a complete discussion of the properties of the parabolic cylinder -~ction the

reader is referred to {29,30,31]. For small values of its argument it assumes tie

power series expansion
v 1 V2 v-1/2 4 3
D_y(iz)=— |14 + -+ 2“1 + 0(2%) (B.2)
=% rigd) TG 2res)
while for large arguments it can be approximated by the first terms of the asymp-

totic expansion

s+ 1
D_(z) = exp(-:2/4):"" [1 - 11(12:_5__)
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v(u +1)(v +2)(v +3)
8z i

+ 0(z~°)] (B.3)

Incorporating expressions (B.2), (B.3) in the definition (B.1) of the transition

function outside the transition regions one may assume the approximations

Fi(z) =~ Vmexp(jun/4)|zl*/? exp(jlz|/2)

1 2exp(jn/4) J(v—1/2)
. - . B.4
regh) T ng V) ot ] (B4
for x| << 1, and
Foz)x1- vir+l) vv+1)(v+2)v+3) (B.5)

4z 3272
Of particular importance in our numerical applications is the transition func-
tion of order -1/2 (v = 1/2). The parabolic cylinder function of order -1/2 can

be expressed in terms of the modified Bessel function K of order 1/4 [30,31] as

follows:

Dy () = [ Kyyals?/4) (B6)

Incorporating (B.6) and the relationship [30]

Ky/q(jz/2) = - ﬁ%—q’:—/—s—) /,( z/2)

into eq. (B.1) for v = 1/2 it yields the expression

FE 1 /a(x) = 3 exp(=33n/8) expljlel/2) /xlz] H{7\(1e1/2) (B.7)

Eq. (B.7) can be rewritten in terms of the Bessel functions Jy ;4 and J_ /4. namely

1 ) i
Fiyplz) = 5 explin/4)expjiz|/2)

. [exp(—jﬂ/8)1_|/4(|r|/2) = 'Xl’(j"’/a)-’g/q('?l/z)]
(B.&)
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The Bessel functions of order 1/4 and -1/4 are tabulated in [32]. Therefore, eq.
(B.7) can be readily employed for the numerical computation of the function F*, /2"
L he relatively simple computer program that follows uses a quadrature approxi-
mation of the Bessel functions for |z] < 0.75, an approximation up t; order |z|~2?
for |z] > 2.5 and a third order Lagrangian interpolation in the transition region, to
“achieve an up to third decimal point accuracy of the edge wave transition function.

The amplitude and the argument of the edge wave transition function is plotted

in Figs. 38 and 39 respectively.
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Subroutine for the evaluation of the edge wave
transition function D(x).

CONPLEX . PUNCTION PCFT(XD)

Number of points in the interpolation region.
PARAMETER INPe=d9

conPLEX CJ,CP18,CPJ4,CP008

INTEGER 1

REAL JN(INP),JP(INP),X(INP),8Nn,SNLR,BG
REAL PI,G14,G34,IN14,IP14,H,XD,AR, BN, AP,DP
REAL DX1,DXx2,P

Define limits of the ssall srgument-linear interpoletion-largs argusent
tegions for the approximation of the Bessel Functions so that a three
digit accuracy is achieved,

XD=0,5*XD

SMLRe}.E-§
Sh=.8
BGe6,
Gl4=3.6256099082
Gld=1,2254167024
P1=3,141592653
CJ-(O. .10,
CPI4=(.707106781,.707106781)
CPI8a({.9233075532,.382683432)
CPri18-CONIG(CPJN)
DATA X/.6,.8,1.,1.2,1.4,1.6,1.8,2.,3.2
1.4.,4.2,8.4,6.6,¢.0,5.,5.2,5.4,5.6,8.
2,7.4,7.6,7.0,8,.,0.2,8.4,0.6,0.8,9.,9.2
DATA In/.97369,.81704,.66938,.52598,.306
1,-.19919,-.27877,-.34105,-.38751,-.41537,-.42557,~.410880,~.39622
2,-.35947,-.31059,-.25192,-.10608,-.11580,-.04387,.02694,.09403
3,.155,.20778,.25064,.28228,.30286,.209,.30301,.20685,.25911,.22198
4,.17706,.12638,.07201,.01615,~,039,~,091132,-.136083,-.17981,~.21281
s,°-236’1 .-u25°77 '-.25‘66"02"‘21-023251/
DATA JP/.75888,.76901,.75223,.71291,.65453,.50035,.49366,.39781,.296213
1,.19233,.00947,-.00916,-.10064,~.18235,~.2521,~.30815,-.34926
2,-.37476,-.30449,~.370085,-.35073,~.325851,-.20097,~-.22722,~.16663
3,-.10174,-,.03514,.03087,,.09293,.14967,.19879,.23066,.268,.206
4,.29227,.20688,.27037,.2€363,.20798,.165,.2165),.06459,.01128
5.-.0‘131,-.0’11‘ '-11,"3 '-011521 .-.30‘3’,-.23..2/
Step size.
Be.2
Approximation of the Bessel functions.
IP(XD.LT.SK) THEN
Small argueent fora.
Ir(xp.1r.0.) THEN
PLr7=(0.,0.)
RETURN
ELSE 1F(XD.LT.BMLR) TREN
PCrTeSORT(PI*SORT(2.2XD) ) *CPIS*CEXP(CI*XD)/G34
RETURN
2L82
JN14eSORT(SORT(2./XD))*(1.-XD*XD/3 . +XD**4/42.)/G3d
JP14=d.*SQRT(SORT(.5¢XD))*(1.~XD*XD/5.4XD*¢4/90.)/G14
ENDIP
ELSE IP(XD.GE.SN.AND.XD.LT.BG) THEN
Interpolation region.lLagrange three point interpoletion foraula is
utilised,
50 13 3e2,INP-1
IP(XD.GE.K(3).AND.RD.LT.X(2e1)) THEN
DXleXD=X(1)
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DX2=XD-X(1e¢})
1r(ABS(DX2).GT.ABS(DX1)) GOTO 14
1F(ABS(DX2).LE.ABS(DX1)) GOTO 15
ENDITF
13 CONTINUE
14 P=DXI/W ,
JN1d= . SePe(P=1,)03M(I=1)e(1.-PeP)odN(T)e.5°Pe(Psl.)eInN(131)
JPldm . SePe(P=1,)03P(2=1)4(1.-PeP)oJP(I)e.5¢P0(Pel.)eIP(1e})
GOTO 18
18 P=DX2/H
JNLde . SoPo(P=1.)03R(I)a(1.~PoP)eIN(Te1)e.SePe(Pel . )0IN(2e2)
JP14n . SoPO(P=1.103P(2)e (L. ~PoP)eIP(Tel)e.50P0(Pel, )2 iP(2e2)
GoTO 18
-C Large arguaent form,
ELSE 1r(XD.GE.BG) TREN
AM=COS(XD=-0.125*P1)
BMeSIN(XD-0.125+P1)
A7=COS(XD-0.375+21}
BP=SIN(XD-0.375*P1)
JR14eSQRT(2./(PI°XD) )¢ (AR+3 . *BR/(32.¢XD)=105.*AM/(2048.2XD*XD))
JPl4aSQRT(2./(PI*XD) ) (AP+3.*BP/(32.XD)=105.*AP/(2048,.9XD*XD))
END1P
18 PCFTeSQRT(PI*XD)eCPIL*(CPIO*INILA~CPIB*IPL4 ) *CEXP(CI*XD)
RETURN
END
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Figure 38: Amplitude of the edge wave transition function.
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